هوش مصنوعی مولد چیست؟
هوش مصنوعی مولد کاربران را قادر می سازد تا به سرعت محتوای جدید را بر اساس ورودی های مختلف تولید کنند. ورودی ها و خروجی های این مدل ها می تواند شامل متن، تصاویر، صداها، انیمیشن، مدل های سه بعدی یا انواع دیگر داده ها باشد.
هوش مصنوعی مولد چگونه کار می کند؟
مدلهای هوش مصنوعی مولد از شبکههای عصبی برای شناسایی الگوها و ساختارهای موجود در دادههای موجود برای تولید محتوای جدید و اصلی استفاده میکنند.
یکی از پیشرفتها در مدلهای هوش مصنوعی مولد، توانایی استفاده از رویکردهای یادگیری مختلف، از جمله یادگیری بدون نظارت یا نیمهنظارت شده برای آموزش است. این امر به سازمان ها این توانایی را داده است که به راحتی و به سرعت از حجم زیادی از داده های بدون برچسب برای ایجاد مدل های پایه استفاده کنند. همانطور که از نام آن پیداست، مدل های پایه می توانند به عنوان پایه ای برای سیستم های هوش مصنوعی که می توانند وظایف متعددی را انجام دهند، مورد استفاده قرار گیرند. نمونه هایی از مدل های پایه عبارتند از GPT-3 و Stable Diffusion که به کاربران اجازه می دهد از قدرت زبان استفاده کنندبه عنوان مثال، اپلیکیشن های محبوبی مانند ChatGPT، که از GPT-۳ بهره می برند، به کاربران اجازه می دهند تا یک مقاله را براساس یک درخواست متنی کوتاه تولید کنند. از سوی دیگر، Stable Diffusion به کاربران این امکان را می دهد که با ورودی متن، تصاویر واقعی (فوتورئالیستی) تولید نمایند.
چگونه مدل های هوش مصنوعی تولیدی را ارزیابی کنیم؟
سه شرط کلیدی یک مدل هوش مصنوعی مولد موفق عبارتند از:
- کیفیت: به خصوص برای برنامه هایی که به طور مستقیم با کاربران در تعامل هستند، داشتن خروجی های تولید با کیفیت بالا بسیار مهم است. به عنوان مثال، در تولید گفتار، درک کیفیت گفتار ضعیف دشوار است. به طور مشابه، در تولید تصویر، خروجی های مورد نظر باید از نظر بصری از تصاویر طبیعی قابل تشخیص نباشد.
- تنوع: یک مدل مولد خوب، حالت های اقلیت را در توزیع داده های خود بدون به خطر انداختن کیفیت تولید به تصویر می کشد. این امر به کاهش بایاس در مدل های آموخته شده کمک می کند.
- سرعت: بسیاری از برنامه های تعاملی مانند ویرایش تصویر بلادرنگ برای استفاده در جریان های کاری تولید محتوا، نیاز به تولید سریع دارند.
شکل 1: سه الزامات یک مدل هوش مصنوعی مولد موفق
چگونه می توان مدل های هوش مصنوعی مولد را توسعه داد؟
انواع مختلفی از مدلهای مولد وجود دارد، و ترکیب ویژگیهای مثبت هر کدام منجر به توانایی ایجاد مدلهای قدرتمندتر میشود.
در زیر یک تفکیک وجود دارد:
- مدل های انتشار: همچنین به عنوان مدل های احتمالی انتشار (DDPMs) شناخته می شوند، مدل های انتشار مدل های تولیدی هستند که بردارها را در فضای پنهان از طریق یک فرآیند دو مرحله ای در طول آموزش تعیین می کنند. دو مرحله شامل انتشار به جلو و انتشار معکوس هستند. فرآیند انتشار رو به جلو به آرامی نویز تصادفی را به داده های آموزشی اضافه می کند، در حالی که فرآیند معکوس نویز را معکوس می کند تا نمونه های داده را بازسازی نماید. داده های جدید را می توان با اجرای فرآیند حذف نویز معکوس که از نویز کاملا تصادفی شروع می شود، تولید نمود.
شکل 2: فرآیند انتشار و حذف نویز.
آموزش یک مدل انتشار ممکن است بیشتر از یک مدل رمزگذار خودکار متغیر (VAE) طول بکشد، اما به لطف این فرآیند دو مرحله ای، صدها، اگر نگوییم بی نهایت، می توان لایه ها را آموزش داد، این بدان معناست که مدلهای انتشار عموماً بالاترین کیفیت خروجی را هنگام ساخت مدلهای هوش مصنوعی مولد ارائه میدهند. علاوه بر این، مدل های انتشار نیز به عنوان مدل های پایه طبقه بندی می شوند، زیرا آنها در مقیاس بزرگ هستند، خروجی های با کیفیت بالا ارائه می دهند، انعطاف پذیر هستند و برای موارد استفاده عمومی بهترین در نظر گرفته می شوند. با این حال، به دلیل فرآیند نمونه برداری معکوس، اجرای مدل های فونداسیون فرآیندی کند و طولانی است.
رمزگذارهای خودکار متغیر (VAE: (VAEs ها از دو شبکه عصبی تشکیل شده اند که معمولاً به آنها رمزگذار و رمزگشا می گویند. هنگامی که یک ورودی داده می شود، یک رمزگذار آن را به یک نمایش کوچکتر و متراکم تر از داده ها تبدیل می نماید. این نمایش فشرده، اطلاعاتی را که برای یک رمزگشا بمنظور بازسازی داده های ورودی اصلی لازم است، حفظ می کند، در حالی که هر گونه اطلاعات نامربوط را دور می زند. رمزگذار و رمزگشا با هم کار می کنند تا یک نمایش داده های نهفته کارآمد و ساده را بیاموزند. این امر به کاربر اجازه می دهد تا به راحتی نمایش های نهفته جدیدی را که می توانند از طریق رمزگشا برای تولید داده های جدید نقشه برداری شوند، نمونه برداری کند. در حالی که VAEها میتوانند خروجیهایی مانند تصاویر را سریعتر تولید کنند، تصاویر تولید شده توسط آنها به اندازه تصاویر مدلهای انتشار دقیق نیستند.
- شبکه های متخاصم مولد (GAN : (GANs ها که در سال 2014 کشف شدند، به عنوان متداول ترین متدولوژی مورد استفاده از این سه روش، قبل از موفقیت اخیر مدل های انتشار در نظر گرفته می شدند. GAN ها دو شبکه عصبی را در برابر یکدیگر قرار می دهند: یک مولد که نمونه های جدید تولید می کند و دیگری تمایز کننده که یاد می گیرد محتوای تولید شده را به عنوان واقعی (از دامنه) یا جعلی (تولید شده) تشخیص دهد.
این دو مدل با هم آموزش داده میشوند و هوشمندتر میشوند زیرا تولیدکننده محتوای بهتری تولید میکند و تمایزکننده در تشخیص محتوای تولید شده بهتر میشود. این رویه تکرار میشود و هر دو را تحت فشار قرار میدهد تا پس از هر تکرار، به طور مداوم بهبود پیدا کنند تا زمانی که محتوای تولید شده از محتوای موجود قابل تشخیص نباشد.
یکی دیگر از عوامل در توسعه مدل های مولد، معماری زیر است یکی از محبوب ترین آن ها شبکه ترانسفورماتور است. درک نحوه عملکرد آن در زمینه هوش مصنوعی مولد بسیار مهم است.
شبکه های ترانسفورماتور: مانند شبکه های عصبی بازگشتی، ترانسفورماتورها برای پردازش داده های ورودی متوالی به صورت غیر متوالی طراحی شده اند.
دو مکانیزم، ترانسفورماتورها را برای کاربردهای هوش مصنوعی مبتنی بر متن مناسب می کند: توجه به خود و رمزگذاری موقعیت. هر دوی این فناوریها به نمایش زمان کمک میکنند و به الگوریتم اجازه میدهند تا بر نحوه ارتباط کلمات با یکدیگر در فواصل طولانی تمرکز نماید.
شکل 3: تصویر ارائه شده توسط آیدان گومز، یکی از هشت نویسنده مقاله سال 2017 که ترانسفورماتورها را تعریف کردند (منبع).
یک لایه توجه(اتنشن) به خود وزنی را به هر قسمت از ورودی اختصاص می دهد. وزن نشان دهنده اهمیت آن ورودی در متن نسبت به بقیه ورودی است. کدگذاری موقعیتی یک نمایش از ترتیبی است که در آن کلمات ورودی رخ می دهند.
یک ترانسفورماتور از چندین بلوک ترانسفورماتور تشکیل شده است که به عنوان لایه نیز شناخته می شوند. به عنوان مثال، یک ترانسفورماتور دارای لایههای خودتوجه، لایههای پیشخور و لایههای نرمالسازی است که همگی برای رمزگشایی و پیشبینی جریانهایی از دادههای توکنشده، که میتواند شامل متن، دنبالههای پروتئین یا حتی تکههایی از تصاویر باشد، کار میکنند.
کاربردهای هوش مصنوعی مولد چیست؟
هوش مصنوعی مولد ابزاری قدرتمند برای سادهسازی گردش کار خلاقان، مهندسان، محققان، دانشمندان و غیره است. use caseها و امکانات همه صنایع و افراد را در بر می گیرد.
مدلهای هوش مصنوعی مولد میتوانند ورودیهایی مانند متن، تصویر، صدا، ویدیو و کد را دریافت نموده و محتوای جدیدی را در هر یک از روشهای ذکر شده تولید کنند. برای مثال، میتوانند ورودیهای متن را به تصویر، تصویر را به آهنگ یا ویدیو را به متن تبدیل نمایند.
Use caseهای هوش مصنوعی مولد
شکل 4: این نمودار use caseهای احتمالی هوش مصنوعی در هر دسته را نشان می دهد.
در اینجا محبوب ترین برنامه های مولد هوش مصنوعی آورده شده است:
- زبان: متن ریشه بسیاری از مدل های هوش مصنوعی مولد است و به عنوان پیشرفته ترین دامنه در نظر گرفته می شود. یکی از محبوبترین نمونههای مدلهای مولد مبتنی بر زبان، مدلهای زبان بزرگ (LLMs) نامیده میشوند. مدلهای زبانی بزرگ برای انواع مختلفی از وظایف، از جمله تولید مقاله، توسعه کد، ترجمه و حتی درک توالیهای ژنتیکی مورد استفاده قرار میگیرند.
- صدا: موسیقی، صدا، و گفتار نیز زمینه های در حال ظهور در هوش مصنوعی مولد هستند. به عنوان مثال می توان به مدل هایی اشاره کرد که می توانند آهنگ ها و تکه هایی از کلیپ های صوتی را با ورودی های متن ایجاد کنند، اشیاء را در فیلم ها تشخیص دهند و صداهای همراه را برای فیلم های مختلف ویدیویی ایجاد کنند و حتی موسیقی سفارشی ایجاد کنند.
- دیداری: یکی از محبوب ترین کاربردهای هوش مصنوعی مولد در حوزه تصاویر است. این شامل ایجاد تصاویر سه بعدی، آواتارها، فیلم ها، نمودارها و سایر تصاویر است. انعطافپذیری در تولید تصاویر با سبکهای زیباییشناختی مختلف، و همچنین تکنیکهایی برای ویرایش و اصلاح تصاویر تولید شده وجود دارد. مدل های هوش مصنوعی مولد می توانند گراف هایی ایجاد نمایند که ترکیبات شیمیایی و مولکول های جدیدی را نشان می دهند که به کشف دارو کمک می کنند، تصاویر واقعی برای واقعیت مجازی یا افزوده ایجاد می کنند، مدل های ۳D برای بازی های ویدیویی تولید می کنند، لوگو طراحی می کنند، تصاویر موجود را بهبود می بخشند یا ویرایش می کنند و غیره.
- دادههای مصنوعی: دادههای مصنوعی برای آموزش مدلهای هوش مصنوعی زمانی که دادهها وجود ندارند، محدود هستند یا به سادگی قادر به رسیدگی به موارد گوشهای با بالاترین دقت نیستند، بسیار مفید است. توسعه داده های مصنوعی از طریق مدل های تولیدی شاید یکی از تاثیرگذارترین راه حل ها برای غلبه بر چالش های داده بسیاری از شرکت ها باشد. این روش همه روش ها و موارد استفاده را در بر می گیرد و از طریق فرایندی به نام یادگیری کارآمد برچسبی امکان پذیر است. مدل های هوش مصنوعی مولد می توانند هزینه های برچسب گذاری را با تولید خودکار داده های آموزشی تقویت شده اضافی یا با یادگیری نمایش داخلی داده ها که آموزش مدل های هوش مصنوعی با داده های برچسب گذاری شده کم تر را تسهیل می کند، کاهش دهند.
- در صنعت خودرو، انتظار می رود هوش مصنوعی مولد به ایجاد جهان های سه بعدی و مدل هایی برای شبیه سازی و توسعه خودرو کمک کند. از داده های مصنوعی نیز برای آموزش وسایل نقلیه خودران استفاده می شود. توانایی آزمایش توانایی های یک وسیله نقلیه خودران در یک دنیای سه بعدی واقع گرایانه در جاده، ایمنی، کارایی و انعطاف پذیری را بهبود می بخشد در حالی که ریسک و هزینه های اضافی را کاهش می دهد.
- رشته علوم طبیعی از هوش مصنوعی مولد بهره زیادی می برد. در صنعت مراقبت های بهداشتی، مدل های مولد می توانند با توسعه توالی های پروتئینی جدید برای کمک به کشف دارو به تحقیقات پزشکی کمک کنند. پزشکان همچنین می توانند از اتوماسیون کارهایی مانند نوشتن، کدگذاری پزشکی، تصویربرداری پزشکی و تجزیه و تحلیل ژنومی بهره ببرند. در همین حال، در صنعت آب و هوا می توان از مدل های مولد برای ایجاد شبیه سازی سیاره زمین و کمک به پیش بینی دقیق آب و هوا و پیش بینی بلایای طبیعی استفاده کرد. این برنامهها میتوانند به ایجاد محیطهای ایمنتر برای عموم مردم کمک کنند و به دانشمندان امکان پیشبینی و آمادگی بهتر برای بلایای طبیعی را بدهند.
- همه جنبههای صنعت سرگرمی، از بازیهای ویدیویی گرفته تا فیلم، انیمیشن، جهانسازی و واقعیت مجازی، میتوانند از مدلهای هوش مصنوعی مولد برای کمک به سادهسازی فرآیند تولید محتوای خود استفاده نمایند. سازندگان از مدل های مولد به عنوان ابزاری برای کمک به تکمیل خلاقیت و کار خود استفاده می کنند.
چالش های هوش مصنوعی مولد چیست؟
به عنوان یک فضای در حال تکامل، مدل های مولد هنوز در مراحل اولیه خود قرار دارند و به آن ها فضا برای رشد در حوزه های زیر را می دهد:
- مقیاس زیرساخت محاسباتی: مدلهای هوش مصنوعی مولد میتوانند میلیاردها پارامتر داشته باشند و برای آموزش به خطوط لوله داده سریع و کارآمد نیاز دارند. سرمایه گذاری قابل توجه، تخصص فنی، و زیرساخت های محاسباتی در مقیاس بزرگ برای حفظ و توسعه مدل های مولد ضروری هستند. برای مثال، مدلهای انتشار میتوانند به میلیونها یا میلیاردها تصویر برای آموزش نیاز داشته باشند. علاوه بر این، برای آموزش چنین مجموعه دادههای بزرگی، به قدرت محاسباتی عظیمی نیاز است و متخصصان هوش مصنوعی باید بتوانند صدها GPU را برای آموزش مدلهای خود تهیه کرده و از آنها استفاده نمایند.
- سرعت نمونه برداری: با توجه به مقیاس مدل های مولد، ممکن است در زمان تولید یک نمونه تاخیر وجود داشته باشد. به خصوص برای موارد استفاده تعاملی مانند رباتهای گفتگو، دستیارهای صوتی هوش مصنوعی یا برنامههای خدمات مشتری، مکالمات باید بلافاصله و با دقت انجام شود. همانطور که مدلهای انتشار به دلیل نمونههای باکیفیت بالایی که میتوانند ایجاد کنند، محبوبیت فزایندهای پیدا میکنند، سرعت نمونهبرداری پایین آنها به طور فزایندهای آشکار شده است.
- فقدان داده با کیفیت بالا: اغلب، مدلهای هوش مصنوعی مولد به منظور تولید دادههای مصنوعی برای use caseهای مختلف مورد استفاده قرار می گیرند. با این حال، در حالی که هر روز مجموعهای از دادهها در سطح جهانی تولید میشوند، نمیتوان از همه دادهها برای آموزش مدلهای هوش مصنوعی استفاده کرد. مدلهای مولد برای عملکرد به دادههای باکیفیت و بیطرفانه نیاز دارند. علاوه بر این، برخی از دامنه ها داده های کافی برای آموزش یک مدل را ندارند. به عنوان مثال، تعداد کمی از دارایی های سه بعدی وجود دارد و توسعه آنها گران است. چنین مناطقی به منابع قابل توجهی برای تکامل و بلوغ نیاز دارند.
- مجوزهای داده: با تشدید مشکل کمبود داده های با کیفیت بالا، بسیاری از سازمان ها جهت دریافت مجوز تجاری به منظور استفاده از مجموعه داده های موجود یا ساخت مجموعه داده های سفارشی برای آموزش مدل های تولیدی تلاش می کنند. این امر یک فرآیند بسیار مهم و کلیدی برای جلوگیری از مسائل مربوط به نقض مالکیت معنوی است.
بسیاری از شرکت ها مانند NVIDIA، Cohere، و مایکروسافت قصد دارند از رشد و توسعه مداوم مدل های هوش مصنوعی مولد با سرویس ها و ابزارهایی برای کمک به حل این مسائل حمایت کنند. این محصولات و پلتفرمها پیچیدگیهای راهاندازی مدلها و اجرای آنها در مقیاس را از بین میبرند.
مزایای هوش مصنوعی مولد چیست؟
هوش مصنوعی مولد به چند دلیل مهم است. برخی از مزایای کلیدی هوش مصنوعی مولد عبارتند از:
- الگوریتمهای هوش مصنوعی مولد را میتوان برای ایجاد محتوای جدید و اصلی، مانند تصاویر، ویدیوها، و متن که از محتوای ایجاد شده توسط انسانها قابل تشخیص نیست، مورد استفاده قرار داد. این امر می تواند برای برنامه هایی مانند سرگرمی، تبلیغات و هنرهای خلاق مفید باشد.
- الگوریتمهای هوش مصنوعی مولد را میتوان برای بهبود کارایی و دقت سیستمهای هوش مصنوعی موجود، مانند پردازش زبان طبیعی و بینایی رایانه، استفاده کرد. به عنوان مثال، الگوریتم های مولد هوش مصنوعی را می توان برای ایجاد داده های مصنوعی مورد استفاده قرار داد که می توانند برای آموزش و ارزیابی سایر الگوریتم های هوش مصنوعی استفاده شوند.
-
الگوریتم های هوش مصنوعی عمومی می توانند برای کشف و تجزیه و تحلیل داده های پیچیده به روش های جدید استفاده شوند و به کسب و کارها و محققان اجازه دهند الگوها و رونده ای مخفی را کشف نمایند که ممکن است تنها از داده های خام آشکار نباشند.
-
الگوریتم های هوش مصنوعی مولد می توانند به خودکارسازی و سرعت بخشیدن به انواع وظایف و فرآیندها کمک کنند و در زمان و منابع برای کسب و کارها و سازمان ها صرفه جویی نمایند.
به طور کلی، هوش مصنوعی مولد این پتانسیل را دارد که به طور قابل توجهی بر طیف گسترده ای از صنایع و کاربردها تأثیر بگذارد و یک حوزه مهم تحقیق و توسعه هوش مصنوعی است.